If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7p-4p^2=3
We move all terms to the left:
7p-4p^2-(3)=0
a = -4; b = 7; c = -3;
Δ = b2-4ac
Δ = 72-4·(-4)·(-3)
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-1}{2*-4}=\frac{-8}{-8} =1 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+1}{2*-4}=\frac{-6}{-8} =3/4 $
| -5x+17=-23 | | 28+8y=4 | | 2x+16+35=4x+3 | | -6(w-4)=-8w+36 | | 22y=-44 | | 4,6x=11,5 | | 3u+5=-7(u+5) | | 4+6x=-40 | | -28=-7x(3x+4)+21x | | 14x+6=118 | | -6h-5=-29 | | 7m+m^2=-4 | | 6x-2=x^2 | | 6x+3=7x-9 | | (x-3)=6x-)4-x) | | x/5=9/9 | | 4t−10=2t+2 | | 130+4x+6=180 | | 8s+10=2s+34 | | 8(4x+3)=24 | | -5/2(1-w)=15 | | Y-1=1/8x+-1/4 | | 6g−2=40 | | 24y=30 | | 5f+7=42 | | 5f+7=39 | | (2x-10)+(4x-20)=12 | | (2x-10)+(4x-20)=0 | | 4e+7=39 | | 3(8x-1)=6(4x+7) | | x+(x+15)+3x=405 | | (2x-10+(4x-20)=12 |